[ Avaa Bypassed ]




Upload:

Command:

www-data@18.218.241.211: ~ $
# -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*-
#
# Copyright 2002 Ben Escoto <ben@emerose.org>
# Copyright 2007 Kenneth Loafman <kenneth@loafman.com>
#
# This file is part of duplicity.
#
# Duplicity is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your
# option) any later version.
#
# Duplicity is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with duplicity; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# @author: Juan Antonio Moya Vicen <juan@nowcomputing.com>
#
u"""
Functions to compute progress of compress & upload files
The heuristics try to infer the ratio between the amount of data collected
by the deltas and the total size of the changing files. It also infers the
compression and encryption ration of the raw deltas before sending them to
the backend.
With the inferred ratios, the heuristics estimate the percentage of completion
and the time left to transfer all the (yet unknown) amount of data to send.
This is a forecast based on gathered evidence.
"""

from __future__ import absolute_import
from __future__ import division

from builtins import object
import collections as sys_collections
import math
import threading
import time
from datetime import datetime, timedelta
from duplicity import globals
from duplicity import log
import pickle
import os

tracker = None
progress_thread = None


class Snapshot(sys_collections.deque):
    u"""
    A convenience class for storing snapshots in a space/timing efficient manner
    Stores up to 10 consecutive progress snapshots, one for each volume
    """

    @staticmethod
    def unmarshall():
        u"""
        De-serializes cached data it if present
        """
        snapshot = Snapshot()
        # If restarting Full, discard marshalled data and start over
        if globals.restart is not None and globals.restart.start_vol >= 1:
            try:
                progressfd = open(u'%s/progress' % globals.archive_dir_path.name, u'r')
                snapshot = pickle.load(progressfd)
                progressfd.close()
            except:
                log.Warn(u"Warning, cannot read stored progress information from previous backup",
                         log.WarningCode.cannot_stat)
                snapshot = Snapshot()
        # Reached here no cached data found or wrong marshalling
        return snapshot

    def marshall(self):
        u"""
        Serializes object to cache
        """
        progressfd = open(b'%s/progress' % globals.archive_dir_path.name, u'wb+')
        pickle.dump(self, progressfd)
        progressfd.close()

    def __init__(self, iterable=[], maxlen=10):
        super(Snapshot, self).__init__(iterable, maxlen)
        self.last_vol = 0

    def get_snapshot(self, volume):
        nitems = len(self)
        if nitems <= 0:
            return 0.0
        return self[max(0, min(nitems + volume - self.last_vol - 1, nitems - 1))]

    def push_snapshot(self, volume, snapshot_data):
        self.append(snapshot_data)
        self.last_vol = volume

    def pop_snapshot(self):
        return self.popleft()

    def clear(self):
        super(Snapshot, self).clear()
        self.last_vol = 0


class ProgressTracker(object):

    def __init__(self):
        self.total_stats = None
        self.nsteps = 0
        self.start_time = None
        self.change_mean_ratio = 0.0
        self.change_r_estimation = 0.0
        self.progress_estimation = 0.0
        self.time_estimation = 0
        self.total_bytecount = 0
        self.last_total_bytecount = 0
        self.last_bytecount = 0
        self.stall_last_time = None
        self.last_time = None
        self.elapsed_sum = timedelta()
        self.speed = 0.0
        self.transfers = sys_collections.deque()
        self.is_full = False
        self.current_estimation = 0.0
        self.prev_estimation = 0.0
        self.prev_data = None

    def snapshot_progress(self, volume):
        u"""
        Snapshots the current progress status for each volume into the disk cache
        If backup is interrupted, next restart will deserialize the data and try start
        progress from the snapshot
        """
        if self.prev_data is not None:
            self.prev_data.push_snapshot(volume, self.progress_estimation)
            self.prev_data.marshall()

    def has_collected_evidence(self):
        u"""
        Returns true if the progress computation is on and duplicity has not
        yet started the first dry-run pass to collect some information
        """
        return (self.total_stats is not None)

    def log_upload_progress(self):
        u"""
        Aproximative and evolving method of computing the progress of upload
        """
        if not globals.progress or not self.has_collected_evidence():
            return

        current_time = datetime.now()
        if self.start_time is None:
            self.start_time = current_time
        if self.last_time is not None:
            elapsed = (current_time - self.last_time)
        else:
            elapsed = timedelta()
        self.last_time = current_time

        # Detect (and report) a stallment if no changing data for more than 5 seconds
        if self.stall_last_time is None:
            self.stall_last_time = current_time
        if (current_time - self.stall_last_time).seconds > max(5, 2 * globals.progress_rate):
            log.TransferProgress(100.0 * self.progress_estimation,
                                 self.time_estimation, self.total_bytecount,
                                 (current_time - self.start_time).seconds,
                                 self.speed,
                                 True
                                 )
            return

        self.nsteps += 1

        u"""
        Compute the ratio of information being written for deltas vs file sizes
        Using Knuth algorithm to estimate approximate upper bound in % of completion
        The progress is estimated on the current bytes written vs the total bytes to
        change as estimated by a first-dry-run. The weight is the ratio of changing
        data (Delta) against the total file sizes. (pessimistic estimation)
        The method computes the upper bound for the progress, when using a sufficient
        large volsize to accomodate and changes, as using a small volsize may inject
        statistical noise.
        """
        from duplicity import diffdir
        changes = diffdir.stats.NewFileSize + diffdir.stats.ChangedFileSize
        total_changes = self.total_stats.NewFileSize + self.total_stats.ChangedFileSize
        if total_changes == 0 or diffdir.stats.RawDeltaSize == 0:
            return

        # Snapshot current values for progress
        last_progress_estimation = self.progress_estimation

        if self.is_full:
            # Compute mean ratio of data transfer, assuming 1:1 data density
            self.current_estimation = float(self.total_bytecount) / float(total_changes)
        else:
            # Compute mean ratio of data transfer, estimating unknown progress
            change_ratio = float(self.total_bytecount) / float(diffdir.stats.RawDeltaSize)
            change_delta = change_ratio - self.change_mean_ratio
            self.change_mean_ratio += change_delta / float(self.nsteps)  # mean cumulated ratio
            self.change_r_estimation += change_delta * (change_ratio - self.change_mean_ratio)
            change_sigma = math.sqrt(math.fabs(self.change_r_estimation / float(self.nsteps)))

            u"""
            Combine variables for progress estimation
            Fit a smoothed curve that covers the most common data density distributions,
            aiming for a large number of incremental changes.
            The computation is:
                Use 50% confidence interval lower bound during first half of the progression.
                Conversely, use 50% C.I. upper bound during the second half. Scale it to the
                changes/total ratio
            """
            self.current_estimation = float(changes) / float(total_changes) * (
                (self.change_mean_ratio - 0.67 * change_sigma) * (1.0 - self.current_estimation) +
                (self.change_mean_ratio + 0.67 * change_sigma) * self.current_estimation
            )
            u"""
            In case that we overpassed the 100%, drop the confidence and trust more the mean as the
            sigma may be large.
            """
            if self.current_estimation > 1.0:
                self.current_estimation = float(changes) / float(total_changes) * (
                    (self.change_mean_ratio - 0.33 * change_sigma) * (1.0 - self.current_estimation) +
                    (self.change_mean_ratio + 0.33 * change_sigma) * self.current_estimation
                )
            u"""
            Meh!, if again overpassed the 100%, drop the confidence to 0 and trust only the mean.
            """
            if self.current_estimation > 1.0:
                self.current_estimation = self.change_mean_ratio * float(changes) / float(total_changes)

        u"""
        Lastly, just cap it... nothing else we can do to approximate it better.
        Cap it to 99%, as the remaining 1% to 100% we reserve for the last step
        uploading of signature and manifests
        """
        self.progress_estimation = max(0.0, min(self.prev_estimation +
                                                (1.0 - self.prev_estimation) *
                                                self.current_estimation, 0.99))

        u"""
        Estimate the time just as a projection of the remaining time, fit to a
        [(1 - x) / x] curve
        """
        # As sum of timedeltas, so as to avoid clock skew in long runs
        # (adding also microseconds)
        self.elapsed_sum += elapsed
        projection = 1.0
        if self.progress_estimation > 0:
            projection = (1.0 - self.progress_estimation) / self.progress_estimation
        self.time_estimation = int(projection * float(self.elapsed_sum.total_seconds()))

        # Apply values only when monotonic, so the estimates look more consistent to the human eye
        if self.progress_estimation < last_progress_estimation:
            self.progress_estimation = last_progress_estimation

        u"""
        Compute Exponential Moving Average of speed as bytes/sec of the last 30 probes
        """
        if elapsed.total_seconds() > 0:
            self.transfers.append(float(self.total_bytecount - self.last_total_bytecount) /
                                  float(elapsed.total_seconds()))
        self.last_total_bytecount = self.total_bytecount
        if len(self.transfers) > 30:
            self.transfers.popleft()
        self.speed = 0.0
        for x in self.transfers:
            self.speed = 0.3 * x + 0.7 * self.speed

        log.TransferProgress(100.0 * self.progress_estimation,
                             self.time_estimation,
                             self.total_bytecount,
                             (current_time - self.start_time).seconds,
                             self.speed,
                             False
                             )

    def annotate_written_bytes(self, bytecount):
        u"""
        Annotate the number of bytes that have been added/changed since last time
        this function was called.
        bytecount param will show the number of bytes since the start of the current
        volume and for the current volume
        """
        changing = max(bytecount - self.last_bytecount, 0)
        self.total_bytecount += int(changing)  # Annotate only changing bytes since last probe
        self.last_bytecount = bytecount
        if changing > 0:
            self.stall_last_time = datetime.now()

    def set_evidence(self, stats, is_full):
        u"""
        Stores the collected statistics from a first-pass dry-run, to use this
        information later so as to estimate progress
        """
        self.total_stats = stats
        self.is_full = is_full

    def set_start_volume(self, volume):
        self.prev_data = Snapshot.unmarshall()
        self.prev_estimation = self.prev_data.get_snapshot(volume)
        self.progress_estimation = max(0.0, min(self.prev_estimation, 0.99))

    def total_elapsed_seconds(self):
        u"""
        Elapsed seconds since the first call to log_upload_progress method
        """
        return (datetime.now() - self.start_time).seconds


def report_transfer(bytecount, totalbytes):
    u"""
    Method to call tracker.annotate_written_bytes from outside
    the class, and to offer the "function(long, long)" signature
    which is handy to pass as callback
    """
    global tracker
    global progress_thread
    if progress_thread is not None and tracker is not None:
        tracker.annotate_written_bytes(bytecount)


class LogProgressThread(threading.Thread):
    u"""
    Background thread that reports progress to the log,
    every --progress-rate seconds
    """
    def __init__(self):
        super(LogProgressThread, self).__init__()
        self.setDaemon(True)
        self.finished = False

    def run(self):
        global tracker
        if not globals.dry_run and globals.progress and tracker.has_collected_evidence():
            while not self.finished:
                tracker.log_upload_progress()
                time.sleep(globals.progress_rate)

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
backends Folder 0755
__init__.py File 1.08 KB 0644
_librsync.cpython-38-x86_64-linux-gnu.so File 19.99 KB 0644
asyncscheduler.py File 10.54 KB 0644
backend.py File 25.55 KB 0644
cached_ops.py File 1.64 KB 0644
commandline.py File 51.33 KB 0644
diffdir.py File 26.4 KB 0644
dup_collections.py File 45.95 KB 0644
dup_main.py File 65.43 KB 0644
dup_temp.py File 8.1 KB 0644
dup_threading.py File 8.56 KB 0644
dup_time.py File 11.37 KB 0644
errors.py File 2.66 KB 0644
file_naming.py File 16.76 KB 0644
filechunkio.py File 2.54 KB 0644
globals.py File 10.19 KB 0644
globmatch.py File 7.04 KB 0644
gpg.py File 17.3 KB 0644
gpginterface.py File 23.05 KB 0644
lazy.py File 14.5 KB 0644
librsync.py File 8.54 KB 0644
log.py File 13.07 KB 0644
manifest.py File 17.95 KB 0644
patchdir.py File 21.78 KB 0644
path.py File 27.73 KB 0644
progress.py File 13.49 KB 0644
robust.py File 2.42 KB 0644
selection.py File 21.82 KB 0644
statistics.py File 13.15 KB 0644
tarfile.py File 1.26 KB 0644
tempdir.py File 10.55 KB 0644
util.py File 8.42 KB 0644